數學建模
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然后根據結果去解決實際問題。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
歷史背景 編輯本段
近半個多世紀以來,隨著計算機技術的迅速發展,數學的應用不僅在工程技術、自然科學等領域發揮著越來越重要的作用,而且以空前的廣度和深度向經濟,管理,金融、生物、醫學、環境、地質、人口、交通等新的領域滲透,所謂數學技術已經成為當代高新技術的重要組成部分。
數學模型(Mathematical Model)是一種模擬,是用數學符號,數學式子,程序,圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般并非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
不論是用數學方法在科技和生產領域解決哪類實際問題,還是與其它學科相結合形成交叉學科,首要的和關鍵的一步是建立研究對象的數學模型,并加以計算求解(通常借助計算機);數學建模和計算機技術在知識經濟時代的作用可謂是如虎添翼。
建模應用 編輯本段
數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在于概念的抽象性,邏輯的嚴密性,結論的明確性和體系的完整性,而且在于它應用的廣泛性。自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的后備走到了前沿。經濟發展的全球化、計算機的迅猛發展、數學理論與方法的不斷擴充,使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。
建模過程 編輯本段
模型準備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰準確。模型假設
根據實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變量常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的準確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,并進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
應用與推廣
應用方式因問題的性質和建模的目的而異,而模型的推廣就是在現有模型的基礎上對模型有一個更加全面的考慮,建立更符合現實情況的模型。
建模意義 編輯本段
思考方法
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象,簡化建立能近似刻畫并"解決"實際問題的一種強有力的數學手段。數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只研究數學而不管數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
應用數學模型
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立數學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特征和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然后利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想象力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領域廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之一。
為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的一個重要方面,許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。
為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以后的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟件及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題。
數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數學素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。
接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網絡、層次分析法、模糊數學,數學軟件包的使用等等“短課程”(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能。培訓中廣泛地采用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用,競賽中一定要使用計算機及相應的軟件,如Spss,Lingo,Maple,Mathematica,Matlab甚至排版軟件等。
發展狀況 編輯本段
西方情況
數學建模是在20世紀60和70年代進入一些西方國家大學的,中國的幾所大學也在80年代初將數學建模引入課堂。經過20多年的發展,絕大多數本科院校和許多???a href="https://www.www.968545.com/doc-view-1353.html" target="_blank">學校都開設了各種形式的數學建模課程和講座,為培養學生利用數學方法分析、解決實際問題的能力開辟了一條有效的途徑。大學生數學建模競賽最早是1985年在美國出現的,1989年在幾位從事數學建模教育的教師的組織和推動下,中國幾所大學的學生開始參加美國的競賽,而且積極性越來越高,近幾年參賽校數、隊數占到相當大的比例。可以說,數學建模競賽是在美國誕生、在中國開花、結果的。
中國情況
1992年由中國工業與應用數學學會組織舉辦了10個城市的大學生數學模型聯賽,74所院校的314隊參加。教育部領導及時發現、并扶植、培育了這一新生事物,決定從1994年起由教育部高教司和中國工業與應用數學學會共同主辦全國大學生數學建模競賽、每年一屆。十幾年來這項競賽的規模以平均年增長25%以上的速度發展。
2009 年全國有33個省/市/自治區(包括香港和澳門特區)1137所院校、15046個隊(其中甲組12276隊、乙組2770隊)、4萬5千多名來自各個專業的大學生參加競賽,是歷年來參賽人數最多的(其中西藏和澳門是首次參賽)。

附件列表
詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫學等領域),建議您咨詢相關領域專業人士。