傅立葉變換
傅立葉變換是一種分析信號(hào)的方法,表示能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅立葉變換具有多種不同的變體形式,如連續(xù)傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。

概念定義
Fourier transform或Transformée de Fourier有多個(gè)中文譯名,常見的有“傅里葉變換”、“付立葉變換”、“傅立葉轉(zhuǎn)換”、“傅氏轉(zhuǎn)換”、“傅氏變換”、等等。為方便起見,本文統(tǒng)一寫作“傅里葉變換”。
傅立葉變換是一種分析信號(hào)的方法,它可分析信號(hào)的成分,也可用這些成分合成信號(hào)。許多波形可作為信號(hào)的成分,比如正弦波、方波、鋸齒波等,傅立葉變換用正弦波作為信號(hào)的成分。
定義介紹
f(t)是t的周期函數(shù),如果t滿足狄里赫萊條件:在一個(gè)以2T為周期內(nèi)f(X)連續(xù)或只有有限個(gè)第一類間斷點(diǎn),附f(x)單調(diào)或可劃分成有限個(gè)單調(diào)區(qū)間,則F(x)以2T為周期的傅里葉級(jí)數(shù)收斂,和函數(shù)S(x)也是以2T為周期的周期函數(shù),且在這些間斷點(diǎn)上,函數(shù)是有限值;在一個(gè)周期內(nèi)具有有限個(gè)極值點(diǎn);絕對(duì)可積。則有①式成立。稱為積分運(yùn)算f(t)的傅立葉變換,
②式的積分運(yùn)算叫做F(ω)的傅立葉逆變換。F(ω)叫做f(t)的像函數(shù),f(t)叫做F(ω)的像原函數(shù)。F(ω)是f(t)的像。f(t)是F(ω)原像。
傅里葉變換在物理學(xué)、電子類學(xué)科、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率論、統(tǒng)計(jì)學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動(dòng)力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用(例如在信號(hào)處理中,傅里葉變換的典型用途是將信號(hào)分解成頻率譜——顯示與頻率對(duì)應(yīng)的幅值大小)。
相關(guān)理論
*傅里葉變換屬于諧波分析。
*傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;
*正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解。在線性時(shí)不變的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對(duì)于復(fù)雜激勵(lì)的響應(yīng)可以通過組合其對(duì)不同頻率正弦信號(hào)的響應(yīng)來獲取;
*卷積定理指出:傅里葉變換可以化復(fù)雜的卷積運(yùn)算為簡(jiǎn)單的乘積運(yùn)算,從而提供了計(jì)算卷積的一種簡(jiǎn)單手段;
*離散形式的傅立葉變換可以利用數(shù)字計(jì)算機(jī)快速地算出(其算法稱為快速傅里葉變換算法(FFT)).
通俗解釋
首頁,使用正余弦波,理論上可以疊加為一個(gè)矩形。隨著正弦波數(shù)量逐漸的增長(zhǎng),他們最終會(huì)疊加成一個(gè)標(biāo)準(zhǔn)的矩形,大家從中體會(huì)到了什么道理?
不僅僅是矩形,你能想到的任何波形都是可以如此方法用正弦波疊加起來的。這是沒有接觸過傅里葉分析的人在直覺上的第一個(gè)難點(diǎn),但是一旦接受了這樣的設(shè)定,游戲就開始有意思起來了。
正弦波累加成矩形波,我們換一個(gè)角度來看看:
這就是矩形波在頻域的樣子,是不是完全認(rèn)不出來了?教科書一般就給到這里然后留給了讀者無窮的遐想,以及無窮的吐槽,其實(shí)教科書只要補(bǔ)一張圖就足夠了:頻域圖像,也就是俗稱的頻譜。
可以發(fā)現(xiàn),在頻譜中,偶數(shù)項(xiàng)的振幅都是0,也就對(duì)應(yīng)了圖中的彩色直線。振幅為0的正弦波。
線性性質(zhì)
傅里葉變換的線性,是指兩函數(shù)的線性組合的傅里葉變換,等于這兩個(gè)函數(shù)分別做傅里葉變換后再進(jìn)行線性組合的結(jié)果。具體而言,假設(shè)函數(shù)和傅里葉變換存在,任意常系數(shù),則有尺度變換性質(zhì)若函數(shù)傅里葉變換為則對(duì)任意的非零實(shí)數(shù)a,函數(shù)傅里葉變換在,且等于于情形,上式表明,若將圖像沿橫軸方向壓縮,則其傅里葉變換的圖像將沿橫軸方向展寬,同時(shí)高度變?yōu)樵瓉淼?/span>對(duì)于情形,還會(huì)使得傅里葉變換的圖像關(guān)于縱軸做鏡像對(duì)稱。
特殊變換
連續(xù)
一般情況下,若“傅里葉變換”一詞的前面未加任何限定語,則指的是“連續(xù)傅里葉變換”。“連續(xù)傅里葉變換”將平方可積的函數(shù)表示成復(fù)指數(shù)函數(shù)的積分形式:上式其實(shí)表示的是連續(xù)傅里葉變換的逆變換,即將時(shí)間域的函數(shù)表示為頻率域的函數(shù)的積分。反過來,其正變換恰好是將頻率域的函數(shù)示為時(shí)間域的函數(shù)積分形式。一般可稱函數(shù)原函數(shù),而稱函數(shù)傅里葉變換的像函數(shù),原函數(shù)和像函數(shù)構(gòu)成一個(gè)傅里葉變換對(duì)(transform pair)。
當(dāng)為奇函數(shù)(或偶函數(shù))時(shí),其余弦(或正弦)分量為零,而可以稱這時(shí)的變換為余弦變換(或正弦變換)。
傅里葉級(jí)數(shù)
連續(xù)形式的傅里葉變換其實(shí)是傅里葉級(jí)數(shù)的推廣,因?yàn)榉e分其實(shí)是一種極限形式的求和算子而已。對(duì)于周期函數(shù),它的傅里葉級(jí)數(shù)(Fourier series)表示被定義為:其中函數(shù)的周期,傅里葉展開系數(shù),它們等于對(duì)于實(shí)值函數(shù),函數(shù)的傅里葉級(jí)數(shù)可以寫成:其中實(shí)頻率分量的振幅。
離散時(shí)間
離散時(shí)間傅里葉變換(discrete-time Fourier transform, DTFT)針對(duì)的是定義域為Z的數(shù)列。設(shè)某一數(shù)列,則其DTFT被定義為
相應(yīng)的逆變換為
DTFT在時(shí)域上離散,在頻域上則是周期的,它一般用來對(duì)離散時(shí)間信號(hào)進(jìn)行頻譜分析。DTFT可以被看作是傅里葉級(jí)數(shù)的逆。
離散傅里葉變換
為了在科學(xué)計(jì)算和數(shù)字信號(hào)處理等領(lǐng)域使用計(jì)算機(jī)進(jìn)行傅里葉變換,必須將函數(shù)定義在離散點(diǎn)上而非連續(xù)域內(nèi),且須滿足有限性或周期性條件。這種情況下,序列離散傅里葉變換(discrete Fourier transform, DFT)為
其逆變換為直接使用DFT的定義計(jì)算的計(jì)算復(fù)雜度為而快速傅里葉變換(fast Fourier transform, FFT)可以將復(fù)雜度改進(jìn)為計(jì)算復(fù)雜度的降低以及數(shù)字電路計(jì)算能力的發(fā)展使得DFT成為在信號(hào)處理領(lǐng)域十分實(shí)用且重要的方法。
在阿貝爾群上的統(tǒng)一描述
以上各種傅里葉變換可以被更統(tǒng)一的表述成任意局部緊致的阿貝爾群上的傅里葉變換。這一問題屬于調(diào)和分析的范疇。在調(diào)和分析中,一個(gè)變換從一個(gè)群變換到它的對(duì)偶群(dual group)。此外,將傅里葉變換與卷積相聯(lián)系的卷積定理在調(diào)和分析中也有類似的結(jié)論。
傅里葉變換家族
下表列出了傅里葉變換家族的成員。容易發(fā)現(xiàn),函數(shù)在時(shí)(頻)域的離散對(duì)應(yīng)于其像函數(shù)在頻(時(shí))域的周期性,反之連續(xù)則意味著在對(duì)應(yīng)域的信號(hào)的非周期性。
變換提出
傅里葉是一位法國數(shù)學(xué)家和物理學(xué)家的名字,英語原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier對(duì)熱傳遞很感興趣,于1807年在法國科學(xué)學(xué)會(huì)上發(fā)表了一篇論文,運(yùn)用正弦曲線來描述溫度分布,論文里有個(gè)在當(dāng)時(shí)具有爭(zhēng)議性的決斷:任何連續(xù)周期信號(hào)可以由一組適當(dāng)?shù)恼仪€組合而成。當(dāng)時(shí)審查這個(gè)論文的人,其中有兩位是歷史上著名的數(shù)學(xué)家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),當(dāng)拉普拉斯和其它審查者投票通過并要發(fā)表這個(gè)論文時(shí),拉格朗日?qǐng)?jiān)決反對(duì),在他此后生命的六年中,拉格朗日?qǐng)?jiān)持認(rèn)為傅里葉的方法無法表示帶有棱角的信號(hào),如在方波中出現(xiàn)非連續(xù)變化斜率。法國科學(xué)學(xué)會(huì)屈服于拉格朗日的威望,拒絕了傅里葉的工作,幸運(yùn)的是,傅里葉還有其它事情可忙,他參加了政治運(yùn)動(dòng),隨拿破侖遠(yuǎn)征埃及,法國大革命后因會(huì)被推上斷頭臺(tái)而一直在逃避。直到拉格朗日死后15年這個(gè)論文才被發(fā)表出來。
拉格朗日是對(duì)的:正弦曲線無法組合成一個(gè)帶有棱角的信號(hào)。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基于此,傅里葉是對(duì)的。
用正弦曲線來代替原來的曲線而不用方波或三角波來表示的原因在于,分解信號(hào)的方法是無窮的,但分解信號(hào)的目的是為了更加簡(jiǎn)單地處理原來的信號(hào)。
用三角函數(shù)展開
為什么偏偏選擇三角函數(shù)而不用其他函數(shù)進(jìn)行分解?我們從物理系統(tǒng)的特征信號(hào)角度來解釋。我們知道:大自然中很多現(xiàn)象可以抽象成一個(gè)線性時(shí)不變系統(tǒng)來研究,無論你用微分方程還是傳遞函數(shù)或者狀態(tài)空間描述。線性時(shí)不變系統(tǒng)可以這樣理解:輸入輸出信號(hào)滿足線性關(guān)系,而且系統(tǒng)參數(shù)不隨時(shí)間變換。對(duì)于大自然界的很多系統(tǒng),一個(gè)正弦曲線信號(hào)輸入后,輸出的仍是正弦曲線,只有幅度和相位可能發(fā)生變化,但是頻率和波的形狀仍是一樣的。也就是說正弦信號(hào)是系統(tǒng)的特征向量!當(dāng)然,指數(shù)信號(hào)也是系統(tǒng)的特征向量,表示能量的衰減或積聚。自然界的衰減或者擴(kuò)散現(xiàn)象大多是指數(shù)形式的,或者既有波動(dòng)又有指數(shù)衰減(復(fù)指數(shù)形式),因此具有特征的基函數(shù)就由三角函數(shù)變成復(fù)指數(shù)函數(shù)。但是,如果輸入是方波、三角波或者其他什么波形,那輸出就不一定是什么樣子了。所以,除了指數(shù)信號(hào)和正弦信號(hào)以外的其他波形都不是線性系統(tǒng)的特征信號(hào)。
傅里葉變換
傅里葉級(jí)數(shù)和傅里葉變換其實(shí)就是我們之前討論的特征值與特征向量的問題。分解信號(hào)的方法是無窮的,但分解信號(hào)的目的是為了更加簡(jiǎn)單地處理原來的信號(hào)。這樣,用正余弦來表示原信號(hào)會(huì)更加簡(jiǎn)單,因?yàn)檎嘞覔碛性盘?hào)所不具有的性質(zhì):正弦曲線保真度。且只有正弦曲線才擁有這樣的性質(zhì)。
這也解釋了為什么我們一碰到信號(hào)就想方設(shè)法的把它表示成正弦量或者復(fù)指數(shù)量的形式;為什么方波或者三角波如此“簡(jiǎn)單”,我們非要展開的如此“麻煩”;為什么對(duì)于一個(gè)沒有什么規(guī)律的“非周期”信號(hào),我們都絞盡腦汁的用正弦量展開。就因?yàn)檎伊?或復(fù)指數(shù))是特征向量。
時(shí)域頻域
什么是時(shí)域?從我們出生,我們看到的世界都以時(shí)間貫穿,股票的走勢(shì)、人的身高、汽車的軌跡都會(huì)隨著時(shí)間發(fā)生改變。這種以時(shí)間作為參照來觀察動(dòng)態(tài)世界的方法我們稱其為時(shí)域分析。而我們也想當(dāng)然的認(rèn)為,世間萬物都在隨著時(shí)間不停的改變,并且永遠(yuǎn)不會(huì)靜止下來。
什么是頻域?頻域(frequency domain)是描述信號(hào)在頻率方面特性時(shí)用到的一種坐標(biāo)系。用線性代數(shù)的語言就是裝著正弦函數(shù)的空間。頻域最重要的性質(zhì)是:它不是真實(shí)的,而是一個(gè)數(shù)學(xué)構(gòu)造。頻域是一個(gè)遵循特定規(guī)則的數(shù)學(xué)范疇。正弦波是頻域中唯一存在的波形,這是頻域中最重要的規(guī)則,即正弦波是對(duì)頻域的描述,因?yàn)闀r(shí)域中的任何波形都可用正弦波合成。
對(duì)于一個(gè)信號(hào)來說,信號(hào)強(qiáng)度隨時(shí)間的變化規(guī)律就是時(shí)域特性,信號(hào)是由哪些單一頻率的信號(hào)合成的就是頻域特性。
時(shí)域分析與頻域分析是對(duì)信號(hào)的兩個(gè)觀察面。時(shí)域分析是以時(shí)間軸為坐標(biāo)表示動(dòng)態(tài)信號(hào)的關(guān)系;頻域分析是把信號(hào)變?yōu)橐灶l率軸為坐標(biāo)表示出來。一般來說,時(shí)域的表示較為形象與直觀,頻域分析則更為簡(jiǎn)練,剖析問題更為深刻和方便。目前,信號(hào)分析的趨勢(shì)是從時(shí)域向頻域發(fā)展。然而,它們是互相聯(lián)系,缺一不可,相輔相成的。貫穿時(shí)域與頻域的方法之一,就是傳說中的傅里葉分析。傅里葉分析可分為傅里葉級(jí)數(shù)(Fourier Serie)和傅里葉變換(Fourier Transformation)。
變換分類
根據(jù)原信號(hào)的不同類型,我們可以把傅里葉變換分為四種類別:
1非周期性連續(xù)信號(hào)傅里葉變換(Fourier Transform)
2周期性連續(xù)信號(hào)傅里葉級(jí)數(shù)(Fourier Series)
3非周期性離散信號(hào)離散時(shí)域傅里葉變換(Discrete Time Fourier Transform)
4周期性離散信號(hào)離散傅里葉變換(Discrete Fourier Transform)
是四種原信號(hào)圖例:
這四種傅里葉變換都是針對(duì)正無窮大和負(fù)無窮大的信號(hào),即信號(hào)的的長(zhǎng)度是無窮大的,我們知道這對(duì)于計(jì)算機(jī)處理來說是不可能的,那么有沒有針對(duì)長(zhǎng)度有限的傅里葉變換呢?沒有。因?yàn)檎嘞也ū欢x成從負(fù)無窮大到正無窮大,我們無法把一個(gè)長(zhǎng)度無限的信號(hào)組合成長(zhǎng)度有限的信號(hào)。面對(duì)這種困難,方法是把長(zhǎng)度有限的信號(hào)表示成長(zhǎng)度無限的信號(hào),可以把信號(hào)無限地從左右進(jìn)行延伸,延伸的部分用零來表示,這樣,這個(gè)信號(hào)就可以被看成是非周期性離解信號(hào),我們就可以用到離散時(shí)域傅里葉變換的方法。還有,也可以把信號(hào)用復(fù)制的方法進(jìn)行延伸,這樣信號(hào)就變成了周期性離散信號(hào),這時(shí)我們就可以用離散傅里葉變換方法進(jìn)行變換。這里我們要學(xué)的是離散信號(hào),對(duì)于連續(xù)信號(hào)我們不作討論,因?yàn)橛?jì)算機(jī)只能處理離散的數(shù)值信號(hào),我們的最終目的是運(yùn)用計(jì)算機(jī)來處理信號(hào)的。
但是對(duì)于非周期性的信號(hào),我們需要用無窮多不同頻率的正弦曲線來表示,這對(duì)于計(jì)算機(jī)來說是不可能實(shí)現(xiàn)的。所以對(duì)于離散信號(hào)的變換只有離散傅里葉變換(DFT)才能被適用,對(duì)于計(jì)算機(jī)來說只有離散的和有限長(zhǎng)度的數(shù)據(jù)才能被處理,對(duì)于其它的變換類型只有在數(shù)學(xué)演算中才能用到,在計(jì)算機(jī)面前我們只能用DFT方法,后面我們要理解的也正是DFT方法。這里要理解的是我們使用周期性的信號(hào)目的是為了能夠用數(shù)學(xué)方法來解決問題,至于考慮周期性信號(hào)是從哪里得到或怎樣得到是無意義的。
每種傅里葉變換都分成實(shí)數(shù)和復(fù)數(shù)兩種方法,對(duì)于實(shí)數(shù)方法是最好理解的,但是復(fù)數(shù)方法就相對(duì)復(fù)雜許多了,需要懂得有關(guān)復(fù)數(shù)的理論知識(shí),不過,如果理解了實(shí)數(shù)離散傅里葉變換(real DFT),再去理解復(fù)數(shù)傅里葉就更容易了,所以我們先把復(fù)數(shù)的傅里葉放到一邊去,先來理解實(shí)數(shù)傅里葉變換,在后面我們會(huì)先講講關(guān)于復(fù)數(shù)的基本理論,然后在理解了實(shí)數(shù)傅里葉變換的基礎(chǔ)上再來理解復(fù)數(shù)傅里葉變換。
傅里葉變換
還有,這里我們所要說的變換(transform)雖然是數(shù)學(xué)意義上的變換,但跟函數(shù)變換是不同的,函數(shù)變換是符合一一映射準(zhǔn)則的,對(duì)于離散數(shù)字信號(hào)處理(DSP),有許多的變換:傅里葉變換、拉普拉斯變換、Z變換、希爾伯特變換、離散余弦變換等,這些都擴(kuò)展了函數(shù)變換的定義,允許輸入和輸出有多種的值,簡(jiǎn)單地說變換就是把一堆的數(shù)據(jù)變成另一堆的數(shù)據(jù)的方法。
變換意義
傅里葉變換是數(shù)字信號(hào)處理領(lǐng)域一種很重要的算法。要知道傅里葉變換算法的意義,首先要了解傅里葉原理的意義。傅里葉原理表明:任何連續(xù)測(cè)量的時(shí)序或信號(hào),都可以表示為不同頻率的正弦波信號(hào)的無限疊加。而根據(jù)該原理創(chuàng)立的傅里葉變換算法利用直接測(cè)量到的原始信號(hào),以累加方式來計(jì)算該信號(hào)中不同正弦波信號(hào)的頻率、振幅和相位。
和傅里葉變換算法對(duì)應(yīng)的是反傅里葉變換算法。該反變換從本質(zhì)上說也是一種累加處理,這樣就可以將單獨(dú)改變的正弦波信號(hào)轉(zhuǎn)換成一個(gè)信號(hào)。因此,可以說,傅里葉變換將原來難以處理的時(shí)域信號(hào)轉(zhuǎn)換成了易于分析的頻域信號(hào)(信號(hào)的頻譜),可以利用一些工具對(duì)這些頻域信號(hào)進(jìn)行處理、加工。最后還可以利用傅里葉反變換將這些頻域信號(hào)轉(zhuǎn)換成時(shí)域信號(hào)。
從現(xiàn)代數(shù)學(xué)的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個(gè)函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。
在數(shù)學(xué)領(lǐng)域,1. 傅里葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;2. 傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解。在線性時(shí)不變雜的卷積運(yùn)算為簡(jiǎn)單的乘積運(yùn)算,從而提供了計(jì)算卷積的一種簡(jiǎn)單手段;4. 離散形式的傅里葉的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對(duì)于復(fù)雜激勵(lì)的響應(yīng)可以通過組合其對(duì)不同頻率正弦信號(hào)的響應(yīng)來獲取;5. 著名的卷積定理指出:傅里葉變換可以化復(fù)變換可以利用數(shù)字計(jì)算機(jī)快速的算出(其算法稱為快速傅里葉變換算法(FFT))。
圖像傅里葉變換
圖像的頻率是表征圖像中灰度變化劇烈程度的指標(biāo),是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區(qū)域,對(duì)應(yīng)的頻率值很低;而對(duì)于地表屬性變換劇烈的邊緣區(qū)域在圖像中是一片灰度變化劇烈的區(qū)域,對(duì)應(yīng)的頻率值較高。傅里葉變換在實(shí)際中有非常明顯的物理意義,設(shè)f是一個(gè)能量有限的模擬信號(hào),則其傅里葉變換就表示f的譜。從純粹的數(shù)學(xué)意義上看,傅里葉變換是將一個(gè)函數(shù)轉(zhuǎn)換為一系列周期函數(shù)來處理的。從物理效果看,傅里葉變換是將圖像從空間域轉(zhuǎn)換到頻率域,其逆變換是將圖像從頻率域轉(zhuǎn)換到空間域。換句話說,傅里葉變換的物理意義是將圖像的灰度分布函數(shù)變換為圖像的頻率分布函數(shù),傅里葉逆變換是將圖像的頻率分布函數(shù)變換為灰度分布函數(shù)。
傅里葉變換以前,圖像(未壓縮的位圖)是由對(duì)在連續(xù)空間(現(xiàn)實(shí)空間)上的采樣得到一系列點(diǎn)的集合,我們習(xí)慣用一個(gè)二維矩陣表示空間上各點(diǎn),則圖像可由z=f(x,y)來表示。由于空間是三維的,圖像是二維的,因此空間中物體在另一個(gè)維度上的關(guān)系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對(duì)應(yīng)關(guān)系。為什么要提梯度?因?yàn)閷?shí)際上對(duì)圖像進(jìn)行二維傅里葉變換得到頻譜圖,就是圖像梯度的分布圖,當(dāng)然頻譜圖上的各點(diǎn)與圖像上各點(diǎn)并不存在一一對(duì)應(yīng)的關(guān)系,即使在不移頻的情況下也是沒有。傅里葉頻譜圖上我們看到的明暗不一的亮點(diǎn),實(shí)際像上某一點(diǎn)與鄰域點(diǎn)差異的強(qiáng)弱,即梯度的大小,也即該點(diǎn)的頻率的大小(可以這么理解,圖像中的低頻部分指低梯度的點(diǎn),高頻部分相反)。一般來講,梯度大則該點(diǎn)的亮度強(qiáng),否則該點(diǎn)亮度弱。這樣通過觀察傅里葉變換后的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點(diǎn)數(shù)更多,那么實(shí)際圖像是比較柔和的(因?yàn)楦鼽c(diǎn)與鄰域差異都不大,梯度相對(duì)較?。?,反之,如果頻譜圖中亮的點(diǎn)數(shù)多,那么實(shí)際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對(duì)頻譜移頻到原點(diǎn)以后,可以看出圖像的頻率分布是以原點(diǎn)為圓心,對(duì)稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個(gè)好處,它可以分離出有周期性規(guī)律的干擾信號(hào),比如正弦干擾,一副帶有正弦干擾,移頻到原點(diǎn)的頻譜圖上可以看出除了中心以外還存在以某一點(diǎn)為中心,對(duì)稱分布的亮點(diǎn)集合,這個(gè)集合就是干擾噪音產(chǎn)生的,這時(shí)可以很直觀的通過在該位置放置帶阻濾波器消除干擾。
另外說明以下幾點(diǎn):
1、圖像經(jīng)過二維傅里葉變換后,其變換系數(shù)矩陣表明:
若變換矩陣Fn原點(diǎn)設(shè)在中心,其頻譜能量集中分布在變換系數(shù)短陣的中心附近(圖中陰影區(qū))。若所用的二維傅里葉變換矩陣Fn的原點(diǎn)設(shè)在左上角,那么圖像信號(hào)能量將集中在系數(shù)矩陣的四個(gè)角上。這是由二維傅里葉變換本身性質(zhì)決定的。同時(shí)也表明一股圖像能量集中低頻區(qū)域。
2 、變換之后的圖像在原點(diǎn)平移之前四角是低頻,最亮,平移之后中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。
主要應(yīng)用
盡管最初傅里葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。"任意"的函數(shù)通過一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對(duì)簡(jiǎn)單的函數(shù)類,這一想法跟化學(xué)上的原子論想法何其相似!奇妙的是,現(xiàn)代數(shù)學(xué)發(fā)現(xiàn)傅里葉變換具有非常好的性質(zhì),使得它如此的好用和有用,讓人不得不感嘆造物的神奇:
傅里葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;
傅里葉變換的逆變換容易求出,而且形式與正變換非常類似;
正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時(shí)不變的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對(duì)于復(fù)雜激勵(lì)的響應(yīng)可以通過組合其對(duì)不同頻率正弦信號(hào)的響應(yīng)來獲取;
著名的卷積定理指出:傅里葉變換可以化復(fù)雜的卷積運(yùn)算為簡(jiǎn)單的乘積運(yùn)算,從而提供了計(jì)算卷積的一種簡(jiǎn)單手段;
離散形式的傅里葉變換可以利用數(shù)字計(jì)算機(jī)快速的算出(其算法稱為快速傅里葉變換算法(FFT)).
正是由于上述的良好性質(zhì),傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率、統(tǒng)計(jì)、密碼學(xué)、聲學(xué)、光學(xué)等領(lǐng)域都有著廣泛的應(yīng)用。
有關(guān)傅里葉變換的FPGA實(shí)現(xiàn)
傅里葉變換是數(shù)字信號(hào)處理中的基本操作,廣泛應(yīng)用于表述及分析離散時(shí)域信號(hào)領(lǐng)域。但由于其運(yùn)算量與變換點(diǎn)數(shù)N的平方成正比關(guān)系,因此,在N較大時(shí),直接應(yīng)用DFT算法進(jìn)行譜變換是不切合實(shí)際的。然而,快速傅里葉變換技術(shù)的出現(xiàn)使情況發(fā)生了根本性的變化。本文主要描述了采用FPGA來實(shí)現(xiàn)2k/4k/8k點(diǎn)FFT的設(shè)計(jì)方法。